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ABSTRACT

This report describes an associative (content-
addressable) computer memory simulation, called GIRS
(Graph Information Retrieval System), designed to

,handle the dynamic insertion, retrieval, and deletion
of arbitrary symbolic or numeric data structures. The
main purpose of the study is to demonstrate fundamental
trade-offs between time, space, complexity, and flex-
ibility in the field-level operation of any associative
memory simulation. Specifically, the paper concludes
that

* a reduction of retrieval time is possible at
the cost of a complex linkage scheme and slow
insertion;

* the design of a random node generator can be
optimized to match the scrambling transfor-
mation and reduce retrieval time;

a dynamic reorganization of pages and the use
of inference mechanisms can reduce the number
of page fetches and handle complex queries
with minimal storage.
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This report was written in the Computer Sciences Division of the

Computation and Mathematics Department under the sponsorship of
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INTRODUCTION

This paper describes an associative (content-addressable) memory

simulation, called GIRS (Graph Information Retrieval System), designed

to handle the dynamic insertion, retrieval, and deletion of arbitrary

symbolic or numeric data structures. The main purpose of the paper is

to demonstrate some fundamental trade-offs between time, space, com-

plexity, and flexibility in the field-level operation of an associative

memory simulation. Specifically the paper investigates

o reduction of retrieval time versus the cost of a complex

linkage scheme and slow insertion;

optimal design of a random node generator to match the

scrambling transformation and reduce retrieval time;

o dynamic reorganization of pages and the use of inference

mechanisms to reduce the number of page fetches and to

handle complex queries with minimal storage.

In an ideal associative memory, every address (called a node address,

or simply, a node) has a potential labelled association with every other

node in the memory. When an association is realized say by placing the

label and the node couple in a cell--one says that an association, or link,

has been formed between a source node and a sink node. The abstract rep-

resentation of such a link is called a node-link-node triple (Figure I).

A

Figure 1 - Node-Link-Node Triple

Other terminology treats the link in the node-link-node triple as a

function in which the argument is the source node and the value is
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the sink node. Indeed, the function may be multivalued, as shown in Figure 2.

B

A- CI, C2 , C3

Figure 2 - Multivalued Function

The values are then said to be on a value list. The values may be nodes

(i.e., cell addresses), numeric (e.g., integer) data, or.Hollerith data.

In a computer having random access sequential memory, every memory cell

is directly accessible to the system software through a numerical address.

The memory is sequential due to the complete ordering of addresses, and

randomly accessible (rather than serially accessible), since any address

can be specified directly without regard to its ordered antecedents. Other

than for the ordering of addresses, there is no hardware linkage between

cells.

Due to its rigid but easily accessible structure, a sequential memory

is especially well suited for numeric processing of fixed data arrays.

Most modern computers have sequential memories. On the other hand, for

non-numeric data processing or processing of dynamically changing data

structures, one may require an associative memory. In order to simulate

an associative memory in a sequentially addressed computer by means of

software, it is most economical to employ a content-addressable memory

scheme, the nature of which will be reviewed in the next section.

Diagrams composed of combinations-of node-link-node triples represent

graph structures. GIRS is an associative (content-addressable) memory

scheme designed to accommodate the insertion, retrieval, and deletion of

information contained in arbitrary graph structures. These operations are

dynamic in the sense that space.for a particular association or list involved

in the operation need be reserved only at execution time and not by decla-

ration beforehand.
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Morris 1 has written an excellent review on the subject of content-

addressable memories. That review is summarized in the next section.

2
Associative languages have been discussed by Feldman and Rovner and

Berkowitz.' 4  In addition, a language with inferential capability

is discussed in Ash and Sibley. 5

BACKGROUND ON CONTENT-ADDRESSABLE MEMORIES

A review by Morris on the subject of content-addressable memories

is summarized here to focus attention on the critical design elements

of a content-addressable memory.

COMPUTATION OF HASHED ADDRESSES

With each block of data A to be stored, we associate a key, A2 . The

key may be extracted in part or in its entirety from the data. If the

block of data extends over several memory cells, some internal linking

for the block must be employed, but, for the purposes of the discussion,

it suffices to consider (A,, A2 ) as occupying one cell.

A hashed or scrambled address, which indicates the location of the data

A1 , is the value of a transformation T of the key A2 . The transformation T

is single-valued but, in general, many-one, so that in order to avoid many

collisions of hashed addresses, it is wise to select a T which provides a

uniform spread- of hashed addresses throughout memory. The resolution of

collisions is discussed later. One way to choose a transformation is to

References are listed on Page 50 in the order of their occurrence.
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2

select some bits from the middle of (A2 ) or from the product or sum

(modulo the memory size) of terms of a subset of A2 -- hence the description

hashed or scrambled address. The resultant apparently-uniform random spread

of addresses is called a scatter storage. Since, excepting a collision,

the key A2 is stored at the address T(A 2 ) or is implicit, in part, in the

address itself, the hashed address is a function of its contents--hence the

description content-addressable memory.

RESOLUTION OF-COLLISIONS

When two keys A2 andB2 collide--i.e., have the same hashed-address,

T(A2 T(B)--the data block B2 must be-reassigned to another address.

The resultant list of collisions is called a conflict list.

There are two classes of techniques for constructing- conflict lists:

increment probing, and direct chaining.

In the increment- probing technique, one searches or probes the memory

for an empty cell that can be added to the conflict list by incrememting

the last conflict address x. as follows:1

X =xi + f (Mod M)

where M is the memory size and f, may be1

* a fixed constant (If fi = 1, the search-is called linear probing);

* a function of i;

* a pseudo-random number (based- either on a universal initiator--in

which case the ith increments of all conflict lists are the same--or

on x 0 or some xi as the initiator); the pseudo-random generator must

-be capable of generating M numbers without cycling.

In the direct chaining technique, an internal link A' is added to the
3

keyed data (A1 , A2 ) to indicate the location of the next cell on the conflict

list. The conflict list is then chained, so to speak. The chaining may be
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one-way, two-way, or circular, depending on whether the links point down,

or up and down, or have no termination (i.e., last link points to top cell),

respectively. Variations of direct chaining depend on the use of overflow

(generally secondary storage), as follows:

(i) Overflow may be used as a direct extension of scatter storage.

(ii) Scatter storage contains only heads of conflict lists, while

overflow holds the list bodies.

(iii) Scatter storage holds only pointers to the heads of conflict

lists in overflow: called scatter index table.

(iv) Scatter storage may be used as in (ii) or (iii) but with the

hash address computed for a much larger scatter storage than

is actually being used: called virtual scatter table or

virtual scatter index table, respectively. This technique

drastically reduces the number of conflicts, on the average,

since the probability of collision is based on the larger

scatter storage. On the other hand, a somewhat longer key

must be used to account for the larger virtual storage.

Increment Probing Evaluation. The prime advantage of increment probing

is the ease of programming. However, the disadvantages are several.

Due to the intersection of conflict lists, the key must be

entirely and explicitly stored with the data in order to resolve

possible ambiguities of identification.

Deletion of an entry requires either that (1) the gap in the

conflict list be closed--at great computational expense--in

order that a list termination not appear in the middle of a list,

or that (2) a distinguished symbol or flag be placed in the empty

cell to denote continuation, in which case space will be wasted

and probe and deletion time somewhat increased.

The average probe time for increment probing is somewhat greater

than that for direct chaining.

There is no convenient provision for overflow.
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Direct Chaining Evaluation. The advantages of direct chaining are three-

fold:

• There is a savings in probe time over that for increment probing

(especially in the case of virtual storage with its small conflict

lists).

* There is a provision for overflow.

• In the last three of the overflow chaining techniques ((ii),

(iii), and (iv)), an item once entered into a cell need never.

be moved to make room for a new insertion, since intersecting

conflict lists do not occur. There is no need, in any of the

chaining techniques, moreover, to close the gaps made when items

are deleted, since one can chain around deleted entries. Deletion

is simplified.

As might be expected, however, there are some complementary disadvantages,

namely:

More storage is required for links and also for the index table

(where used); moreover, in all uses of direct chaining employing

virtual storage, the key must be longer, as mentioned above.

The programming is complex.

Due to the linkage update necessary, insertion generally takes

much longer than retrieval.

THE GIRS SCHEME

IN-'CORESTORAGE 'DESIGN

GIRS is a scheme for the computer simulation of an associative,

content-addressable, memory designed to store information structured as

node-link-node triples. A direct chaining approach without paging is
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discussed first. Later, an extension to GIRS is discussed which involves

the incorporation of paging procedures to accommodate programs requiring

larger amounts of storage than is available in primary memory.

Available Space (free storage). Before any entry into GIRS is made,

the sequential memory is organized into a circular two-way (up-down) list

as shown in Figure 3. This arrangement is called available space (AS).

The zeroed fields shown in Figure 3 will be discussed later. A distinguished

register called REGASP (register of available space) holds the entry cell to

AS. In general, by an initial rearrangement of AS under a permutation a,

one may be able to reduce the number of cell contents displacements--bumpings--

caused by allocation of space for conflict list head cells in space already

occupied by other type cells. For example, if hashed address generation is

initially dense at low numbered addresses, it will be profitable to allow

a(A) = M-A for A<<M. For a sufficiently wide range in the data, the density

of hashed addresses will be uniform on the average, and a might as well be

the identity.

GM): (a(2) r (N) 0 0)

a(x): (a(x+l) G(x-l) 0 0

U(N) (CM() U(N-l) 0 0

Figure 3 - Initial Arrangement of Available Space

Work Space (bound storage). When an entry is made into the memory,

one says that the entered cell has been removed from available space and

placed in work space (WS). A cell in WS is structured in a four-field

format as shown in Figure 4. As will be made clear, work space contains
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not only conflict lists, but also multivalue lists. The multivalue lists

contain either sink nodes, numerical data, or Hollerith data.

x KEY/MVL MVLL/UV CLL F

Figure 4 - Work Space Cell Format

As an alternative means of realizing the complementary WS and AS,

the GIRS system has a block of sequentially ordered space called

sequential space (SS) in which multivalue list nodes or data may,

optionally, be stored. Sequential space has the advantage of rapid

list access and immediate overlay extension, and the corresponding

disadvantage of necessarily predetermined fixed list lengths which may

be established during execution but cannot be easily changed. Each block

of SS is preceded by a header cell which contains the number of items in

the block. Blocks are homogeneous as to cell type. In particular, any

Hollerith insertion of more than ten characters constitutes a block of SS.

When data is intended for SS, a pointer to the block in SS is left in the

graph, as described below.

The WS fields in Figure 4 are defined as follows:

KEY/MVL Field (The key or multivalue list field) - Contains either

A source node address (which also serves as a key) for all heads

of univalue or multivalue lists, or

A value in the body of a multivalue list; the value may be a sink

node address, a number, or a pointer to an SS block.

MVLL/UV Field (The multivalue list link or univalue field) - Contains

The addresses of the next cell and of the previous cell on the

multivalue list. A two-way list is needed because of the potential

length of multivalue lists. As will be shown later, the two-way

list allows the efficient use of a list index operation; moreover,

one can take advantage of the storage requirements for the CLL

field, as will be described later.
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• The value (sink node address, integer datum, or pointer to an SS

block) on a univalue list.

CLL Field (The conflict list link field ) - Contains the address of

the cell next on the conflict list. When the current cell is the

last conflict list cell, CLL contains the address of the head of the

list. A circular list is feasible, since the conflict lists are

generally very short (an average of two to three cells per list).

F Field (The flag field) - Contains eleven flags.

FO - indicates whether or not the cell is head of a multivalue

list;

Fl - indicates whether or not the cell is in WS;

F2 - indicates whether or not the cell is contained in the body of

a multivalue list;

F3 - indicates whether or not the cell:'is a pointer to a multivalue

list in SS;

F4 - indicates whether or not the address of the cell is defined to

exist in the graph interpretation. This flag is used during

clean-up of useless information--garbage-collection--so that

cells may be returned to AS;

F5 - indicates whether or not the cell is head of a conflict list;

F6 - indicates whether or not the MVLL/UV field (in the case of a

univalue list) or the KEY/MVL field (in the case of a multi-

value list) contains a sink node;

F7 - indicates whether or not MVLL/UV or KEY/MVL or an SS block

contains a Hollerith datum;

F8 - indicates whether or not MVLL/UV or KEY/MVL or an SS block

contains a single-precision number;

F9 - indicates whether or not MVLL/UV or KEY/IHVL or an SS block

contains an integer,

10



Actually, flags F6, F7,..., can be described by a binary number

encompassing fewer bits than are required for flags. (i.e., flags F6,

F7, F8, and F9 require a 2-bit number description). Note also that

FO = F2 = 0 implies a univalue insertion.

When a cell is situated at the head of a univalue or multivalue list, the

CLL field is occupied by a link, as described above. However, when a cell

is situated in the body of a multivalue list, the CLL field is normally

empty. We can take advantage of this empty space for storing the up-

pointers of the multivalue list. On the other hand, for a multivalue list of

n cells (i.e., one which includes a head cell and n-l value cells), there

would be only n-l up-pointers since the head cell CLL field contains a

conflict list link. Therefore, one must tailor the up-down pointer

structure to suit the operations proposed for the system, as detailed in

the following discussion.

Since we must allow a conflict list head to replace, or bump, any

cell of a multivalue list, the up (down) pointer of the succeeding

(preceding) cell must be modified to point to the new body cell acquired

from AS. If the body cell bumped happened to be the last cell of the list,

we might require that the MVLL/UV field contain the address of the first

value cell (i.e., the second cell on the list). Then, however, the CLL

field of the first value cell would have to contain the head cell address

in order to account for a possible bumping of the first value cell. This

arrangement would be suitable if it were not for the fact that a basic

motivation for having "up" pointers is that the bottom of the list be

accessible from the head cell. We resolve the dilemma as follows: the

CLL field of the first value cell contains the address of the bottom cell

of the multivalue list; the MVLL/UV field of the last value cell contains

11



the address of the head cell. Although this arrangement is sufficient and

it avoids the difficulties just outlined, it nevertheless results in a

structural asymmetry which makes detecting the ends of the up and down

list scans difficult. Whereas the down-scan ends when the next address

is that of the head cell (see flag FO), the up-scan must make a double

access, one down to the bottom cell and the next up to the head cell.

Unless we can find another means of handling conflict list links, this

asymmetry is a necessary price for the flexibility of up-down lists.

Example of a GIRS Structure

In order to clarify the definitions and discussion just presented, we

offer an example of a GIRS structure. Assume that the graph shown in

Figure 5 is to be inserted into GIRS memory. The hashing transformation

used by GIRS--to be discussed further in the next section--computes the

address of an association by adding the source node and link addresses

modulo the memory size. Since the transformation is invertible, only

the source node address need actually be stored as the key.

B
ED A

Figure 5 - Example Graph Structure

For an initial AS of 15 cells, and for the following address assign-

ments,

A=6 B=2 C=4 D=3 E=5 F=l Z=12

the storage configuration for the example graph of Figure 5 is shown in

Figure 6 on the following page. For simplicity, we assume no (i.e., identity)

12



permutation of the initial up-down list which forms AS. In the comments

column of Figure 6, CL refers to the conflict list, and MVL to the multi-

value list; the triple A, B, C, for example, refers to the insertion of

the source node A linked by B to the sink node C. The order of insertions

was: (A, BO C) (A, B, D) (A, B, E) (A, B, F) (Z, E, Z) (Z, E, A) (E, D, Z).

Note that (A, B, C) was bumped by (Z, E, Z) and (Z, E, A) was bumped by

(E, D, Z).

Memory Cell Fields

'ADDRESS KEY/MVL MVLL/UV CLL F - Comment

1 6 6 8 1100100 body CL, head MVL
2 12 7 2 1100110 head CL, head MVL
3 3 4 6 0110101 A,B,D, body MVL
4 5 5 3 0110101 A,B,E, body MVL
5 1 1 4 0110101 A,B,F, last body

MVL
6 4 3 5 0110101 A,B,C, first body

MVL

7 12 9 9 0110001 Z,E,Z, first body
MVL

8 5 12 1 0100011 E,D,Z, head CL,

univalue
9 6 2 7 0110001 Z,E,A, last body

MVL
10 11 15 0 0000000 AS

11 12 10 0 0000000 AS
12 13 11 0 0000100 AS

13 14 12 0 0000000 AS
14 15 13 0 0000000 AS
15 10 14 0 0000000 AS

Figure 6 - Storage for Example Graph

Another way to envisage the associations between the storage cells is by

considering the 4-field cell pictured in Figure 7 in conjunction with the

cell pointer graph of Figure 8 on the following page.

ADDRESS KEY/MVL

MVLL/UV CLL

Figure 7 - Cell Structure
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0• 0

E

WS AS

Figure 8 - Cell Pointer Graph

Before leaving the GIRS in-core storage design, we comment on the use

and efficiency of the complex linkage Just described. The multivalue list

linkage provides a means of implementing list indexing in a high-level

4
language . In particular, the up-pointers give one the ability to imple-

ment LIFO (last-in first-out) pushdown stacks of dynamically modifiable

length. At first glance, one might be concerned with the time required

to access iteratively each member .of a list--either up or down. Indeed,

for a list of length k, one would make k(k+l)aces. Hovrwcn

E a1eses 1oeer3 ea

remove this difficulty at compile time for GIRL by generating local

storage variables which hold the last index and list location referenced

(together with the direction of list search) thus reducing the iteration.
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to exactly k accesses. (The process is more complicated than what has just

been described, but we leave that discussion for a report on the GIRL pre-

processor or compiler.) In effect, then, the list access is a means Of

effecting matrix storage with dynamically modifiable dimension. Such storage

is logically equivalent to the usual matrix access offered by most computers

with sequential random-access memory in the sense that only one access is

required, in general, per word retrieval--but the access, of.course, takes

more time due to the software implementation. Moreover, additional time is

used for testing whether to count up or down from the head cell or from

the last location used. The preceding techniques for the automatic

retention of indexed multivalue list locations creates the subtle danger

of a reference to a non-existent cell in the event that multivalue list

cells are added or erased. Since the automatic updating of all indices

referring to a list on which an addition or erasure occurs is a hope-

lessly complicated or inefficient task--for example, it might be done by

setting all saved indices back to the first value--we are left with the

caveat: programmer beware.

Finally, an alternative to index/location retention is the use of a

fixed block of storage in sequential space (SS), as previously mentioned,

to hold multivalue lists. As far as retrieval operations are concerned,

SS will appear as a virtual WS. Insertion operations must specify the

initial location of the block in a larger, previously dimensioned array

called SEQ, and also the number of cells belonging to the block (to be

inserted in the first location of the block)° The latter device enables

one to specify list termination and to count up or down the stored list.

Links, of course, are not needed since the storage is sequential, and

the only flags of interest are those which stipulate the type of cell

15



entry. Unless the machine is byte-oriented, flag storage would pose an

intolerable waste of space, and we are forced to declare a uniform data type

for each block. The advantage of SS, of course, is the speed with which

one can access list items. However, SS storage is somewhat rigid since

the block length must be fixed. On the other hand, the length declaration

is done at execution time and can be modified by the program.

Method of Operation

Retrieval. The process of retrieving the value(s) associated with the

source A by link B is as follows:

1. If the "defined" flag F4 of either A or B is not set, then the

process stops and the undefined status is reported outside for halting,

garbage-collecting, or redefinition.

2. Compute the address of the head of the conflict list by the

transformation

x = T(A,B) = A + B (Mod M).

Since the transformation T is invertible, B can be retrieved if necessary

from x and A; therefore, one need have stored only A as the key in the K/M

field.

3. Search the conflict list (having checked flag Fl of x to see if the

list exists) for the key A by means of the links in the CLL field. The

conflict list is circular so that retrieval failure is signalled by the

second access of the list head (flag F5). If the key A is found, flag

FO will have been set if there is a multivalue list.

(a) If FO is indeed set and F3 is not set, the multivalue list

is accessed as a sequence of objects in the KEY/14VL field by links in

the MVLL/UV field. The type of value accessed is determined by the

flags F6, F7, F8, F9, which indicate whether the object is a sink node,

Hollerith datum, single-precision number, or integer, respectively.

16



(b) If both FO and F3 are set, the multivalue list is in the sequen-

tial space SEQ beginning at the address pointer located in the MVLL/UV field.

In all cases, undefinedness of a.sink node is reported outside.

Insertion. The process of inserting the values Cl, C2, C3 (C2, C3 possible

null) associated with the source node A by the Link B is as follows:

1. The cell containing the key A in the KEY/I4VL field is found, if

it exists, exactly as for retrieval.

2. (a) If A is found, add the values Cl, C2, C3 to the multivalue

list by: extracting cells from AS (if not empty) through the REGASP

entry; restoring AS; placing Cl, C2, C3 in the K/M fields of the new

cells. Set the up-down links in the MVLL/UV field, and set flags Fl, F2,

and F6-F9 the latter four depending on the types of Cl, C2, C3. (De-

pending on the nature of the garbage collection routine, one also may

wish to check F4'.of'A, B, Cl, C2, C3, before searching the conflict list,

and then delete the entry if A or B are undefined, or refuse to insert, if

any value is an undefined node.)

(b) If the conflict list exists but A is not found, a new multi-

value list must be set up as in (a), except that the first cell of the,

multivalue list must contain: A in the KEY/MVL field; the address of the

head of the conflict list in the CLL field; either an up-down link in

MVLL/UV for C2, C3 null, or Cl in MVLL/UV for C2 or C3 not null; and a

setting of Fl. Also, the CLL field of the last cell of the conflict list

must be updated to contain T(A,B).

3. If the conflict list does not exist, one must be created beginning

in T(A,B). The details are the same as those in (b) except that F5 must

be set in the head cell. In the event that a cell of some multivalue or

univalue list (head or body) occupies the space required by the new

conflict list head cell, the offending cell must be removed from

T(A,B) and placed in a cell drawn from AS. The flags and key (or

value) are copied from the old to the new cell and the links are

modified to preserve the multivalue and/or conflict list--the latter

in the event the offending cell was the head of a univalue or multi-

value list.
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4. If one requires that the multivalue list exist in SS, the desired

address index of SEQ, say I, is placed in the MVLL/UV field of T(A,B) (or.

its conflict list descendant containing the key A, as the case may be).

The values are then located sequentially in memory beginning at SEQ(I+I).

The number of block locations must be stored in SEQ(I). Hollerith inser-

tions are always made into a block of SS.

5. If AS has been depleted, one must resort to an overlay, to a

garbage collection, or to a processing halt.

Deletion. The process of deleting the values associated with the source

node A by the link B is as follows:

1. A retrieval of the cell--on the conflict list headed by T(A,B)--

containing A in the K/M field is performed exactly as in the retrieval

or insertion procedures.

2. The cells on the multivalue list are returned to AS with F2

turned off by linking them through the access cell in REGASP.

3. The conflict list is restored by chaining around the gap left

by the deleted value list head.

4. If the value list had been in SEQ (F3 set) the list head is

simply returned to AS as above and no further action need by taken as

regards AS. The head cells of any SS blocks on the multivalue list

must be set to zero.

Effects of Node Generation on the Scrambling Transformation

The character of a good scrambling transformation T(A,B) is such that

the average length of conflict lists is minimum. If the node generator is

random with uniform density p($), then the density f(s) of the sum mapping

T(A,B) = A+B(mod M) can be shown to also be uniform by Equation (1).

f(s) f p(1) p(s-ý) d0 (mod M) (1)
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One might then reasonably conclude that a uniform scatter of the association

triplets would provide a satisfactory minimization of conflict list length.

However, there are some difficulties with such a conclusion.

I. The primary objection to the use of a uniform random node gener-

ator is that it is not specifically matched to the mapping scheme. That

is, a judicious choice of the generation sequence might result in a lower

average conflict list length. Consider the node sequence y1 ) Y2""'Ymy

Let the probability (density) that for some y and for arbitrary (Yi y.),

T(yi, yj) maps onto y, be p(y) = p. If the number of value list heads

in-WS is K, then the probability pk(y) of creating a conflict list at

y of length k (for K>>k) is approximately Poisson. (We only consider

value list heads since cells in the list tails may be bumped by conflict

list items. It suffices, therefore, to consider the tails as being

stored outside of WS--in SS, for example.)

The average conflict list length in WS (including zero lists) is

then

PT K
M K pk IyE]/ -I(= M (2)
Y=l k=O

2 2
where K , m (m being the number of nodes generated). If K > m , then K

must be replaced by m2 since there are at most mi2 distinct (source node,

link) pairs available. The average length given by Equation (1) is

independent of the sequence of nodes generated, (and of the specific

number of nodes although m must exceed viZ). This means that, for a

sufficiently large WS (i.e., large K, m) the average access time will

be the-same for any generating scheme. Moreover, it is clear that if all

the addresses of AS are generated as nodes, then the distribution 6f pos-

sible conflict lists is such that there is a list of length M possible at

every address. This fact implies that, for a sufficiently large number of

nodes generated, the distribution of conflicts tends to be uniform ir-

respective of the generating scheme. Therefore, if any generating scheme

has an advantage, it must be that one can avoid many conflicts only

before most of the node addresses are generated. Uniform random node

generators do not take advantage of this fact.
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We speak in the preceding about averages-.althoughthere are, no'doubt,

optimum generating schemes for any particular program and data structures.

Indeed, for certain problems, we have established compact graphs without

conflict lists at all. Moreover, it is possible to adaptively select the

next best node to fit the current node distribution, albeit at considerable

computational expense. In general, however, it is not feasible to custom

design the generating scheme.

2. Another objection to the use of the uniform random node generator

is that it generates multiple hits before producing a complete sequence.

Indeed, if t is the probability of generating a node address that has

already been generated, then the average number of accesses required

until an unused node is generated is

E i tt(1-0 (3)

i=l

thus, as more nodes are produced, it becomes more time-consuming to

generate the next one. Moreover, extra storage must be reserved for a

flag bit which indicates whether or not a node has yet been generated.

3. Finally, the multiplication operation employed by uniform random

generators is expensive, and as we shall see, it might be desirable to

have, a generation scheme based on an addition operation.

We will now discuss a possible scheme to meet the objections

just raised, and show that a variant of the scheme is acceptable.

For a given AS of length M, one could select a prime P < M;

generate the additive group of modulus P with the knowledge that any

s, 1 : s • P. is a generator of the group; and complete the generation

sequentially for the addresses P+l through M. Although this scheme

both avoids the multiple hit problem and also is efficient, it does

not necessarily meet the primary objection of matching the scrambling

transformation. Indeed, the scatter may produce strong clustering,

depending on the generator s.

Suppose we first generate P numbers in the generator Sl, for P a

prime, as just described. Call these numbers Sl, s29,.... sp where

s = jS l (mod P). Then let each sj serve as a further generator of a

sequence

Isjh I Sjh S M, Sjh =s + h 2/2 + (P-I/2)h - Pt (4)
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The sequence in.Equation (2) is in fact generated recursively using pnly

additions, as we shall see. As shown in Figure 9, the sequence thus far

generated leaves certain residues. These can be generated in a straight-

forward manner, as shown in the complete algorithm flow chart in Figure 10.

increasing increment

sI s 1 +P+l sl+2P+3 ...

s2 s 2 +P+l s2+2P+3

initial generation

SP s p+P+l Sp+2P+3 ...

P+l 2P+2 3P+4 "r d

2P+3 ... residues
2P+3 3P+5..

3P+6

Figure 9 - Node Generator Row Sequence

The generation scheme just described not only avoids multiple hits and

multiplication, but also has a low average conflict list length, at least

for small m, because of the increment increase of each column as shown in

Figure 9. The algorithm is-not as complex as Figure 10 makes it appear

since the primary loop involves only a node update and node increment

(dnode) update.

The average number of accesses for retrieval when the node-link pair

is not in WS (called FIND-), for retrieval when the node-link pair is in

WS (called FIND+), and for insertion (called ADD) are now computed. The

probability of producing a mapping T(yl,y 2 ) at a k-list address among all of
' M

AS/WS is 11 Pk(y). But the probability of producing the same in WS alone
*k

is
k M

p(K) = • y l Pk(y) (5)

Equations (5)-(9) are generalizations of equations derived by Professor
A. Newell of Carnegie-Mellon University, Pittsburgh, Pennsylvania.
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Figure 10 -Node Generation Algorithm
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The probability of hitting a head (or last) cell is

M M

p(H) pM(y) (6)
K - (1 p0j), K K p0

y=1 y=l

With these probabilities we now calculate the expected conflict list

lengths for FIND-, FIND+, ADD applied to a hashed address x 6 T(AB).

N K M M
EFIND= =1 E po(y) +! Z k Z p e +• (7)

MYi k=l y=l y=l

K kl.K M

E[FIND+J = K k+l p(K) 1 K M p 2p(Y) (8)
k=l 2 y=l

E[ADD] = 4p(x e AS,H) + 6p(x c WS,H) + 7p(x c WS,-H)

= . (M-K) p(H) K - K-M-K(l-p(H)) + 6 i p(H) + 7 R (l-p(H)) (9)

Moreover, the variances of these operations are

M2) +K (10)
var[FIND] E . (e-P + p 2  (E[FIND- (10)

y=l

+ M 3 7 2 1 32

va+[FIND =E (1 + 72 K + 13 K2 ) (E[FIND]) 2  (11)
j=1

var[ADD] = 16 (M-K)p(H) + 36 K p(H) + 49 E(l-p(H))-(E[ADD]) 2  (12)
M-K(l-p (II)7

As an example, plots are given for E[FIND"+] and ýE[FIND+]+

,.var[FIND+]A for K = 50, 14 = 100 in Figure 11. Since p(y) is not in

general unimodal and symmetric, the plots for the standard deviation

should be regarded with caution as giving a rough idea of the spread of

accesses. One could with some inconvenience, discount the assymetry of

p(y) by calculating right and left deviations, but the curves in Figure 11

represent the mean plus right standard deviation to within one access, and,

in any event, suffice to display the proportionality of spread between the

various cases. The best and worse cases were calculated by successively

generating nodes whose distribution minimized and maximized E[FIND ,
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respectively. As predicted in the discussion of Equation (1), the curves

in Figure 11 show that for m/M Ž .5 the number of accesses required is

unaffected by the generating method. Moreover, for m/M < .5, the number

of accesses required in the worst case can be two to three times as great

as for the best case. Indeed, a glance at Equation (8) indicates that since

the squared emphasis on clusters is not degraded for increased K, the number

of accesses for fixed m can rise proportional to K. More important,

Equation (9) indicates that, under the same conditions, the standard de-

viation also increases monotonically with K. Since the choice of the

prime clearly can approximate either the best or worst cases, we must now

determine a method for selecting the prime.

From the row generating sequence of Equation (2), one can specify

the m for which the mth generated node in the row is less than or equal

to the modulus M.

2
s5 + +(P - 1/2) m - P : M (13)

With no loss of generality, one may choose s.=P. Then, for equality in

Equation (13), one finds:

2M = -(P - 1/2) ± 4(P 1/2) + 2M (14)

Since m < M/2 specifies the limit of our concern with non-clustering, we

can fix the number of residues at M/2 by the equation

m P = M/2 (15)

Thus, by Equations (13) and (14), one has

P = 1/2 AR (16)

Indeed, for the example in Figure 11, P = 1/2 .T-0i= 5 is very close to

the "best" case.
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Memory and Timing Considerations

As *. design of all data management schemes, there has been a trade-

off in GIRS between various competing criteria. In order to achieve high

speed and structural flexibility, we have introduced direct chaining at

the expense of a 50 percent increase in memory requirements and consid-

erable executive complexity. On the other hand, Equation (8) shows that

the average number of accesses is low (at best, less than 1.5) for any

percentage of memory filled. Therefore, it is economical to run with

the memory as full as desired. To some extent, this fact balances the

amount of memory needed, since many other data management schemes cannot

run profitably with full memories.

The availability of a Sequential Space offers a balance between the

dynamhic flexibility of a list-processing memory allocation scheme and the

rigid but rapid response of matrix storage defined at execution time. In

passing, one might note the further availability of pointing to arbitrary

matrices defined at compile time. If R is DIMENSIONed in labelled COMMON,

then one can point to R by making the value of LOC(R) an integer datum

sink node of some triple. When LOC(R) is retrieved and set equal to

some J, then the Ith location of R is found by accessing J(J-LOC(J)+I).

One should not take the above to mean that GIRS is suitable for all data

- 6
management applications. For example, in LISP the expression ((M.N) X

(M.N)) takes a minimum of four cells, whereas GIRS would require at least

six. On the other hand, the LISP association ((A.B)C)) or (A B C) requires

three cells, whereas GIRS requires one. The distribution is rooted in the

fundamental design of GIRS to be an associative memory, whereas LISP,

from a graph-structural viewpoint, contains only either non-terminal

nodes with unary or binary fan-out in homogeneous (i.e., unlabelled)
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linkage or a terminal list of two nodes. Thus, LISP handles nested pairs

of objects quite efficiently due to the (tacit) use of binary homogeneous

links, but does not fare so well with associations.

The GIRS design has produced the average retrieval, insertion, and de-

letion times on the CDC 6700, as shown in Table 1. As expected, the

insertion times exceed the retrieval times, but not significantly. Con-

sidering the linkage sophistication and the fact that GIRS is written in

FORTRAN EXTENDED with no (by hand) machine language optimization attempted,

the times seem quite reasonable. On the other hand, one should note that

each field was assigned a separate word (as might be done in a byte-

oriented computer), and the packed version (one word per cell) will run

somewhat more slowly. Note also the saved index feature mentioned pre-

viously which leaves the time to search down a list uniform for each access.

TABLE 1 - AVERAGE INSERTION, DELETION, RETRIEEVAL TIMES

Time (iicroseconds) Action

59.4 INSERT - univalue, no conflict

82.8 INSERT - univalue, one conflict

116.5 INSERT - 2nd value, no conflict

116.4 INSERT - 3rd value, no conflict

60.6 DELETE - univalue, no conflict

88.3 DELETE - 2-value list, no conflict

27.7 FIND - triple absent

5142 FIND - univalue, one conflict

68.7 FIND - 1st on multivalue list,
no conflict

70.7 FIND - 2nd on multivalue list,
no conflict

71.0 FIND - 5th on multivalue list,
no conflict
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OUT-CORE STORAGE'DESIGN

When an in-core graph overflows the memory, one must have a provision

for storing and accessing the excess data in an external file. The

primary objective of the file design is to minimize the number of disk

reads per graph association access. The objective is more difficult to

realize for arbitrary graphs--i.e., highly structured data--than for

loosely structured blocks of sequential data for which the ratio of

relationships (points, associations) to data words is much less than

unity. The problems associated with an effective partition of a'g'ah

fall into three categories:

• local graph processing

• page reorganization

* generalized inversion

which we now discuss.

Local Graph Processing

The handling of overflow as an immediate global extension of in-core

storage--e.g., by means of scatter index table, as discussed in MorrisI

is not suitable for our purposes since it requires one disk read per graph

access. Instead, we opt for a partition of the memory into pages each of

which permits a local massage of the graph by an analyzing program. This

is considerably more difficult than it sounds. Basically, the local

character of a page subgraph is a matter of interpretation by the ana-

lyzing program, and hence must be left to some extent in the analyst's

hands. It seems quite clear that unless software can be developed to

understand a block of code with respect to some universe of logically
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structured data--a difficult, sometimes impossible task for humans--the

task of efficiently structuring the data for a particular implementation

and execution can never be fully automatic. On the other hand, .some

insight into the way graphs are generally manipulated may facilitate

the formulation of reasonable partition-constructing tools for.the user.

As we have mentioned, any graph may be decomposed into primitive

structures called node-link-node triples. Certain more complex structures

of these primitives may generate a higher level decomposition whose res-

olution decreases as the decomposing structure becomes more complicated.

One fundamental such decomposition maps a graph into lists--a sequence of

triples all containing the same source node and link; and into strings--a

sequence of triples each constrained to have its sink node identical with

the source node of the succeeding triple. This decomposition is, in a

sense, both arbitrary--why not choose lists of length greater than two or

choose trees and circuits--and redundant-- cannot any graph implemented by

lists and pointers also be implemented by strings, and vice versa, however

awkwardly? Indeed, in a list the indices are implicit'in the implementation,

whereas in a string the nodes--aside from a superfluous interpretation as,

say, automaton' states--serve as explicit indices in a link sequence. The-

choice of a combination of lists and strings is directly related to the

conventional use of graphs both in the forms of generative directories,-

stacks, and sets--logically included in a list representation--and in

the forms of recognitive directories, trees, and circuits--logically rep-

resented by strings. Similarly, the distinction between lists and strings

is made not only for the sake of the logical representations just mentioned,

but also to take advantage of the underlying memory structure of in-core
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GIRS which permits, for example, a non-imbedded string--one whose nodes

have no more than one link apiece, i.e., a chain--to be most efficiently

represented by a list.

In order to get a fix on the problem of graph localness using the

list/string decomposition, we first posit the skeleton structure of a

page. The body of a page has exactly the structure of in-core GIRS and

is partitioned between WS and AS. (SS is handled as a straightforward

extension of in-core SS.) The address of a cell in the body has two

parts: a page number prefix and a cell number suffix. Hashing is per-

formed internal to a page on the suffixes of the source node and link,

modulo the body length. The header of the page contains information about

the page, such as the current cell entry to AS and the last node generated;

other header cells will be detailed later.

The central problem is to determine on which page one should place a

newly created node. If the program is creating a list of names of major

graph localities, each new node should be on a different page than the

current one, since, in the skeleton structure outlined above, each page

will have the capacity to contain at least the beginning of a graph

locality. On the other-hand, if the list is part of a hierarchical

directory, then only the terminal nodes of the directory should be on

different pages than the current one. Similarly, if the program is setting

up strings to operate in a trace mode, then the newly created sink nodes

should be on the current page or at worst on few enough other pages so

that primary-memory could contain all of them. More generally, graph

manipulations are, in part, combinations of directory searches and string

traces. While a directory search can result in a separate disk access to

a new graph locality, it is most desirable that a trace take place within
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a given locality pn one page.- For example, consider a stack search which

provides the information to continue a trace. In this case, the stack

nodes are best represented as a list--i.e., .a terminal directory--on a

single page., The sink node addresses however, are intended to represent

links in a single graph locality, and hence are all used on the same page

or at least on some one other page. If the link addresses are never used

as source nodes, their place of definition is irrelevant.

In order to implement strategies of the above sort, manually or auto-

matically, we need to establish a mechanism not only for creating a node--the

suffix of the node address-.but also for stipulating the page on which the

node address is to reside--the prefix of the node address. The operations

are independent so that a node can be created at one time with a zero prefix

and placed on a page when the program context demands it. Since the AS of

each page is different, the initial node address definition is a temporary

address and will be fixed when assigned to a page. In default of either a

direct page stipulation or embedded strategy, the node must be placed on

the in-core page last accessed, the current page. In order to save access

time, we presume that our insertion strategy has localized the search, and we

begin all searches on the current page. If. that fails, we search the other

in-core pages. If that fails, we only then seek a new page from disk. Hence,

we also provide an in-core page directory which lists the pages and their in-

core locations and which contains an indicator cell that specifies the current

page., Since we intend to embed GIRS in another paging scheme--e.g, the CDC

Data Handler, or some variation thereof--it is not necessary to prescribe

the control memory and operations (like create, destroy, access, copy a

page) necessary to efficiently manipulate the pages. Here we are only.

interested in the tools necessary to effect a strategy to choose pages
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for newly created nodes. This is effected by having the INSERT operation

test the elements of the candidate triple for zero prefix, an indicator

of definedness. If a prefix is a zero, INSERT will call a STRATEGY pro-

cedure to be supplied by the user. A typical STRATEGY might be: "If the

link is A, place the sink node on page 3; if the link is B, place the sink

node on page 4; otherwise, default." Such a strategy might be coded in

terms of GIRS itself. The additional time required to execute the STRATEGY

in INSERT would be saved many times over through the reduced number of disk

reads. If the source node prefix is non-zero, the triple is inserted on the

page denoted by that prefix.

In order to achieve a successful partition, one might conceivably adopt

a strategy that would place the same source node on two or more different

pages. An instance of this sort might be one in which a single node served

as entry to two quite independent graphs, or-better, one in which a single

graph is partitioned into two on the-basis of a partition of the link set.

Aside from the minor difficulty of having to redefine nodes of non-zero

prefix, the major resultant problem would be that a table of address

equivalences might have to be established, queried at every access, and

thinned out when certain deletions occur. Moreover, the table (or tree)

would potentially contain as many cells as all of memory. On the other

hand, by restricting the size of the table and flagging those nodes with

addresses on several pages, we can introduce address equivalences. Never-

the less, we have achieved this effective indirect addressing by the use of

'flags which must be tested at every access, and it seems that the same effect

could sometimes be achieved at less cost by properly restructuring the graph.

However, there is a solution which entirely avoids the use of tables, as we

discuss in that which follows.
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In order to account for the possibility of a graph subset overflowing

a page, one might be tempted to resort to variable length pages. However,

not only is such a device notoriously difficult to implement, but in fact

it would not serve the purpose, since such a page might overflow in-core

memory. Rather, we introduce into each page header a continuant cell

which contains a pointer to the next page - called a continuant - containing

the overflow. Thus, a page effectively consists of a sequence of continuants.

The last such continuant contains a zero continuant cell. Since one may

have to get back to the head of a continuant chain,--a reverse continuant

cell containing the head continuant address must also be located in the

header. The first reverse continuant cell is zero. Thus, overflow pages

are lihked'by'an :up-down list. In addition, since all continuants are

referrent-facsimiles of the head continuant and thus have the same page

number, the in-core page directory must indicate the sequence index of the

continuant so that an entry is available to a page search. Since all

continuants have the same page number, the node addresses of the head

continuant are the same as those of any continuant; therefore, the con-

tinuants offer an immediate alternative to the address equivalence problem

noted above. In order to implement such a solution, however, one must

introduce the capability of specifying not only the page on which a

triplet is to be inserted--as given by the source node prefix--but also, as

an option, the continuant.

Page Reorganization

At some point in processing a graph, it may become desirable to

reorganize the continuants of some page for one of two reasons: (1) either

because the current graph structure is inefficiently distributed over the
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pages of memory--a formal inefficiency; or (2) because the processing

program requires a different partition--a content-oriented inefficiency.

A prime example of a formal inefficiency is the spreading of a multi-

value list among several continuants, thus increasing the time required to

traverse the list. In order to use a post-facto reorganization procedure,

a count would have to be made of each insertion which places a triple on

a continuant as a result of an overflow. Consequently, each header would

contain a multivalue overflow cell which would count the number of such

insertions. If any access resulted in the count (on all the continuants

accessed) exceeding a threshold, a multivalue list reorganization would

be performed which synthesized a multivalue list on one page. In order

to make room for entire multivalue lists on a single page a new continuant

might have to be formed. Not only is the foregoing procedure awkward and

time-consuming, but one must also consider the inefficiency of accessing

several pages just for the elements of one multivalue list. Clearly, the

solution is to perform a dynamic reorganization by moving a multivalue

list that would overflow a continuant to a continuant with sufficient

capacity.

If the list is too long for any continuant, then despite the suggestion

that the page length should have been increased, we must make allowance for

a multivalue list continuation pointer in the last list cell, indicating

the continuant holding the rest of the list, and a corresponding multivalue

list continuation flag indicating that the last cell holds a pointer. Thus,

average insertion time is increased, but average access time is kept at a

minimum, which is acceptable since we expect many more reads than writes.

Nonetheless, one must realize that average access time for the out-core

design is bound to be more than that of the in-core memory since the

continuants have to be searched. In particular, for attempting to access
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an item not in the store, all the continuants must be searched; thus

FIND could have the longest access time--whereas in the in-core design,

it had the shortest--unless the page size is judiciously chosen.

An example of a content-oriented inefficiency occurs when a partition

is needed which places the same source node on two or more different

continuants. Clearly, there is no way to decide on a formal basis whether

the separation is advantageous or not. Moreover, if an arbitrary continuant

were permitted to be chosen for the insertion of a triple, then some recon-

ciliation is necessary between this freedom and the constraint of keeping

multivalue lists on a single continuant as prescribed in the preceding

paragraph. An obvious, reasonable, and inescapably awkward way out is

to permit source node separation only when the links are different. A

direct result of this policy in particular and of node separation in general

is that both when inserting (INSERT) a triple on a particular continuant

and when searching for a triple not in the store (FIND-) all the continuants

must be searched, even if the appropriate conflict list was found on an

early continuant. A partial alternative to this search procedure might

be to put a continuant specification option in FIND--as was done before

for INSERT--and to require that whenever the option was invoked, the search

be confined to the continuant specified. There is a danger, of course,

that a multivalue reorganization will have moved the triple in question

unless we dictate the overriding of any such reorganization upon the use

of a continuant specification option during insertion, and institute a

flag, the REORG flag, to inhibit any further reorganization. Advantage is

then taken of the multivalue list continuation pointer and flag as described

earlier for lists which overflow the continuant. The decision as to

whether a source node may appear on more than one continuant should be
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possible not only through the continuation specification option, but as

an embedded constraint in the STRATEGY procedure, On the other hand,

post-facto reorganization--which might be required, for example, to

merge a subgraph constructed on a tentative, separated basis with a more

permanent structure--must be done consciously. Nevertheless, we will

provide procedures MERGE--to merge'two continuants--and SEPARATE--to move

a multivalue list specified by source node and link to a given tiontiuanit.

Generalized Inversion

Up to this point, we have discussed intra-page, rather than inter-page

reorganization. Now we broaden our scope. The kind of question that has

been posed to the memory can be symbolized in the form

A B ? (17)

That is, "What is the object(s) associated with a given source object

by a given attribute?" The usual inverted interrogation has the form

? B c (18)

That is, "What is the source object(s) which are associated to a given

sink object by a given attribute?" The structure of GIRS posed so far does

not yet reflect the necessity to answer questions of this inverted sort, nor

indeed of the following sorts, which are obvious variations of the above.

A ? C (19)

? ? C (20)

? B ? (21)

A ? ? (22)

? ? ? (23)
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For inversion in a more general sense, one may declare any collection of

partly bound triples to be primitive and allow the memory to be inter-

rogated on the unbound portions. For example, in Figure 12, the graph

primitive has the insertion schema

A (B C, D B(F G, H A)) (24)

A

B D H

C 
A

B

F

G

Figure 12 - Example of Graph Primitive

An example of an appropriate question might be

A(X ?, E X (? S, H A)) (25)

where A, X, E, S, H are bound. Unlike the questions above, we have

introduced a Labelling constraint into the primitive, so that imple-

mentations of a schema may be required to have identical substitutions for

the bound variables. Thus, the following question is illegal:

A(X ?, E X (? S, H Z)) (26)

unless Z = A, and the following question is irrelevant:

A(X Y, E X (R S, H ?)) (27)

since ? is bound to be A. Moreover, the free variable ? must sometimes

be restricted, as in the following question:

?A (X ?, E X (? S, H ?A)) (28)
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It seems reasonable to preface the question of whether or not a memory

scheme can be devised to efficiently contain an arbitrary graph primitive

with the question of whether it can be done at all. Since a primitive

schema is a set of triples, there is clearly a solution if one can

handle the inversion problem for triples alone. Indeed, as we shall see,

there is a range of solutions which determine a trade-off between the

complexity of memory and the dynamic flexibility of graph primitives.

For triples inversion, a solution has been suggested by Feldman and

Rovner2 in describing the memory scheme for the LEAP language. In order

to answer the single "single-question-mark"ýqueries of (17), (18), and

(19), triples are inserted by hashing not only (A, B), but also (A, C) and

(B, C), and presumably setting a flag to indicate the query type. There

are some important detailed differences between the LEAP and GIRS organi-

zations, but the effects are similar. The "double-question-mark" queries

of (20), (21), and (22) are satisfied by introduci~tgza new field intoý

each triple which links all the triples having the same hash suffix for the

query type under consideration-i.e., the B of "? B ?" or "? ? B". The

triple-question-mark query (23) implies accessing of all memory and is not

relevant.

In principle, the triples inversion scheme can be directly extended

in several ways to more general schema such as the schema (20). Any schema

consists of say n distinct components Xo(i=l, . . ., n) described by the
1

n-tuple X = (XI, ... , X n). A sequence suffices since the form of the

graph-i.e., the parenthesization of the schema - can reside in a table

for common reference by any instance of the schema. Any query is a

partition of X into the given information Y - on which the key is based -

and the missing information Z - the question-mark/components. A trans-

formation T(Y) provides the address at which a cell of n fields (excluding
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the flag field) is located, as opposed to the triples cell of three fields.

In terms of triples as primitives, the n component schema would have required

at least 3(1 + (n-3)/2) = 1.5(n-l) fields (where n is odd and greater than

one). One could implement inversion either by redundant insertions of X by

means of all the various subvectors Y regarded as keys; or by introducing

additional inversion linkage fields to chain all Y containing a common sub-

vector. However, such an implementation requires consideration of 2n_2

partitions of X and leads us to the following conclusions:

* In general, complete inversion for even moderate values of n is

not feasible, because a memory of combinatorial proportions is

required, and also since an enormous amount of time is required

to continuously updatethe memory.

* Partial inversion--the specification of a small fixed set of Y's

to be used as keys for redundant insertion of X or as inversion

links--is feasible only for a system permitting rigid forms of

query on a moderately stable data base. The easiest way to

implement a partial inversion would be a redundant insertion

into SS keyed on some Ywith a pointer to a prototype structural

description elsewhere in SS.

* For a more flexible query format and a more dynamic data base, a

somewhat inefficient compromise is to allow the query pattern to

be stipulated at a higher level for each insertion as described

for the Pattern Information Retrieval Language PIRL 3. The

pattern--i.e., subgraph--is based on the simultaneous storing of

n-tuple and structure in SS. Partial inversion is facilitated by

declaring a list of source nodes and/or links on the basis of

which a LEAP-like inversion structure of primitive triples is

inserted. Retrieval inversion of the pattern is handled through

a sequence of queries on primitive triples, in a LEAP-like

structure. The principal advantage of this option is that

hierarchies of subgraphs can be described, named, and manip-

ulated much the same as nodes in the ground level graph. The

main disadvantages are the proliferation of subgraph structural
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description with the attendant memory cost and the possible'-

many disk reads necessary to access a sequence of triples on

the basis of an inter-page spread of source nodes.

Perhaps the ultimate dilemma facing the designer in any of the proposed

memory allocation schemes is the problem of inter-page reorganization. As

long as queries must be answered by an immediate direct access to memory,

then the re-partition of schemata for a new form of query demands a complete

cell-by-cell overhaul of memory both to add the new retrieval form and

possibly also to delete the old form. This is clearly a tedious procedure

and is not likely to be acceptable for flexible and dynamic forms of query.

On the other hand, one can relieve the formal storage rigidity of the demand

for a direct, one-to-one retrieval access per query by allowing the FIND

procedure to search for the answer to a query by using knowledge of the

types of permissible associations in memory. Such an inferential capability

may be found in TRAMP4 for example. Here, however, we will not stipulate

an underlying search mechanism, but will rather give the user the opportunity

to imbed an explicit strategy in the procedure INFER which Will be used by

FIND. INFER is a device which can lend great flexibility to the range of

queries and therefore sidestep the need for re-organization; all at the

cost of a potentially long and unguaranteed search. Moreover, one can

specify INFER on several levels. For example, a system programmer might

detail the explicit conditions under which a graph is to be searched,

depending on the query format, and merely modify INFER if the query format

is changed. On the other hand, a somewhat more static arrangement may be

offered to the applications programmer: for example, he might be required

only to submit a tree of associations demanded by a fixed, imbedded

strategy. A more detailed example is now in order. Consider the data

tree structure in Figure 13 on the following page.
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fleet

(ship

(type,

hullno,

dimens

(length, beam, height),

displacement
(empty, gross),

structures

(deck

(id, weight, xcoord),

frame

(id, weight, xcoord),

bulkhd

(id, weight, xcoord))))

Figure 13 - Ship Design Data Structure

/'

The levels of the tree are given by the nesting levels of the parenthesization,

The tree is in fact a relationship graph of links and would be logically

represented in the computer as a set of nodes connected by UP and DOWN

links. For example, deck would have a UP link to structures and a DOWN

link to weight. Any name in the data structure of Figure 13 which immediately

precedes a comma or right parenthesis is a terminal link which, in the actual

data base graph, points either directly to data or indirectly (via an index)

to a matrix location holding the data. Any nest of terminal links may In

fact be replicated many times in the data base. The queries that we would

expect to answer .are of the following kinds.

• Direct, memory-related - that is, those queries answerable by a

single access to memory, such as

What structures does (ship) A have?

What types of structures do ships have?
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Note that the first query is to the data base, whereas the

second is to the relationship graph.

Direct, inverted - that is, those queries which would require a

single access if the inversion relation exists in memory, other-

wise a search from a given entry node is required. For example,

What objects have the structure A?

The entry node for an inversion search would be fleet.

Indirect, memory-related - that is, those queries requiring a

chain of links to secure the answer. For example,

Which decks does (ship) A have?

Which decks do ships have?

. Indirect, inverted - such as,

Which ships have the structure C?

Which objects have the structure C?

Which ships have the deck C?

Which objects have the deck C?

How are the (ship) B and the (deck) C related?

. Direct or indirect, memory-related and inverted - For example,

What objects are related by a structure type?

(That is, for which objects A, B, is B a structure of A)

Which objects are related to deck A?

In Figure 14, Page 43, the flow chart for the search required to answer

an indirect, memory-related query is shown. The GIRL/FORTRAN4 code is given

in the Appendix. Searches for other queries are quite similar and will not

be given here since, as will be discussed, the inference schemes will vary

from data base to data base. That is to say, at the level of interest

(triples retrieval) it would be inefficient to stipulate a general inference

procedure for all data bases since each data base may be associated with a

peculiar set of heuristics to enhance the search. For example, instead of

trees, one may wish to deal with graphs containing circuits; or to build

inversion links or forward links; or to remove them either in the
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Does B(A) exist? Yes Printout
values

No

Breadth-first search of relationship

graph to product list of DOWN links

from C. LISTA holds the list and each list

item has back-pointer REFER to its

generating DOWN link..

LISTA ends when B

link is reached.

Using back-pointers, compile a STRING

containing DOWN links from LISTA which form

a chain from A to the nodes REFERred to by B

On the basis of the STRING of DOWN links, generate

a LISTB which is a tree of nodes in the data

graph traversed by the STRING links.

Figure 14 - Diagram of the Search Procedure for an
Indirect, Memory-Related Query
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relationship graph or in the data base on the basis of frequency of usage;

a kind of partial inversion. In fact, the user may wish to partially

specify the inversion links beforehand. In a like vein, for retrieval

systems which process relatively few queries per user, an interactive

approach might be used so that the system would be directed in its search

by the user. Moreover, the breadth-first, top-down search given in the

example is both guaranteed and blind. Many other search techniques

exist--not so blind but not so well guaranteed--as, for example, thoos-e

7discussed by Nilsson . On the other hand, at a somewhat higher level

of discourse it may be more worthwhile to consider a fixed search

strategy. Such a strategy is describable, for example, in PIRL3 which

is designed to handle sequences, logical conjunction, disjunction, com-

plementation, and quantification of triples and schemata of triples. The

basic lesson to be derived from the example is that an inference search

requires two elements: (1) an abstract, heuristic view of the data base

structure and its interface with a given class of query formats (in the

example, a relationship graph and a method of searching it); (2) the data

base itself (in the example, a simple hierarchical tree terminating in

numerical data). By formally abstracting the attribute relationships

from the data base, we are able to avoid implanting the relationships in

a redundant fashion within memory. In trade for this economy in storage,

we are obliged to engage in a content-oriented search which may be both

expensive and unsuccessful. In a sense, we have introduced a range of

hierarchies of forgetfulness into the memory in exchange for a contraction

of memory, and hence less paging.
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Method of Operation

Before describing the operations, we briefly summarize the memory

structure suggested during parts of the preceding design discussion. In-

core memory contains (1) locations for a set of uniform length page

continuants drawn from secondary storage and (2) an in-core page directory.

Each continuant has a head and a body. The head contains four cells: the

entry to AS, the last node generated, and pointers to the preceding and

succeeding continuants. A page consists of a set of continuants arranged

in an up-down list, with the pointer of the first continuant and the

reverse pointer of the last continuant being zero. The body of a contin-

uant is arranged as for the in-core design, except that each address has

a prefix which is the page number. The set of addresses of the continuant

of a given page is the same set as that for any continuant of the same

page. The last cell of a multivalue list on a given continuant may be a

pointer to more of the same list on another continuant only if Flag 11

(defined to be the multivalue list continuation flag) is set. If the

multivalue list is not eligible for translation to another continuant,

Flag 12 (the REORG flag) is set in the head cell. Moreover, setting

Flag 13 (the list continuation flag) in the head cell of a multivalue

list indicates that the list is a non-movable continuation of a list on

some other continuant. The in-core page directory contains (1) the current

page cell and (2) a vector of (page number, continuant number) couples as

a function of their current location in core.

Retrieval: Find B of A, possibly given a continuant and/or entry (to

INFER).

Step 1. If the continuant of the A-prefix page is specified, fetch the

continuant and apply FIND(A,B).
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Step 2. Otherwise, fetch each continuant of the A-prefix page and apply

FIND(A,B) to each in turn, remembering to disregard head cells with Flag

13 set.

Step 3. If FIND(A,B) is not successful on any continuant then call INFER

(possibly with entry, if supplied).

Insertion: Insert the link B from A to C, possibly given a continuant D

and/or entry to STRATEGY.

Step 1. If D of the A-prefix page is specified, FIND(A,B) on D.

a. If the B(A) list is complete on D and there is an available

cell, then INSERT(A,B,C) on D with STRATEGY and set F12 of the head cell.

If there is no avaiiable cell on D, then fetch the next continuant D' that

has three available cells. Replace the last sink node C' on D-list by a

pointer to D'. Set FlI on the last cell of the D-list. INSERT(A,B,C')

and (AB,C) on D' with STRATEGY--remembering to carry along the flags of

C'--and set F12, F13 on head cell of D'-list.

b. If the B(A) list is not complete on D, then follow the multi-

value list continuation pointers until a continuant D holding the end of

the list is reached. Complete the insertion of (A,B,C) as in la.

Step 2. If the continuant D of the A-prefix page is specified, but FIND(A,B)

does not succeed on D or anywhere else, then perform the insertion (A,B,C)

as in la. However, if FIND(A,B) succeeds on some D' afid F12 does not inhibit

a reorganization, then move the list from D' to D and complete the insertion

of (A,B,C) as in la. If F12 is set, however, an error is reported out; never-

theless, insertion takes place on D' instead of D as in la.

Step 3. If no continuant of the A-prefix page is specified then seek a

continuant D on which FIND(A,B) succeeds and complete the insertion (A,B,C)

on D as in la, except that F12 is not set. If no continuant is found on

which FIND(A,B) succeeds, fetch any continuant with one available cell and

INSERT with STRATEGY.

Deletion: The deletion procedure is a straightforward FIND and trace

through continuants to return all of a multivalue list to AS, and will

not not be detailed here further.
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IMPLEMENTATION

GIRS has been implemented in FORTRAN EXTENDED on the CDC 6700 by

I. Zaritsky. The implementation is based on earlier work performed by

A. Bandurski and P. Friedenberg. A User's Manual will be published

shortly.
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APPENDIX A

SEARCH PROCEDURE FOR INDIRECT, MEMORY-RELATED QUERY--WRITTEN IN
GIRL/FORTRAN

INFER: B of A given thatA is of type C. If (C=O) RETURN

C LISTA HOLDS DOWN LINKS OF C

G 2 LISTA(HOLDS C 'TEMP, REFER TOP)

JTENP=O

3 J=O

G 4 TEMP + DOWN/6 .'J=J+1'/6=B/'NEXT 5/7

G 5 LISTA(HOLDS NEXT, REFER 'JTEMP'//4)

G 6 LISTA(+HOLDs.2JTElP.-JTEMlP+1' 115/'TEMP3)

C * COMPILE STRING OF LINKS FROM C DOWNX TO B

G 7 LISTA STRING(BTEMP)

G 8 LISTA(+REFER.JTEMP'JTEMP=-TOP//9 ,+HOLDS .JTEN.P 'TEMP ,STRING

TEMP / /8)
C ** GENERATE LISTB:TREE OF NODES' BASED ON LINK'STRING

9 J=O

G A'NODE

G 10 LISTA+STRING. 'J=J-1' 'TEMP=B//13

K=O

G 11 NODE+TEMP.'K=K+1'/12Z'NEXT

LISTB(STRING NEXT,REFER 'J'1111)

G 12 LISTB(+STRING/16 (.1'NODE,-.1,+REFER(.1'J,-.1//1O))

C OUTPUT NODES LINKED BY B

13 JJ=O

G 14 NODE+B.2JJ=JJ+1'/12'OUT

PRINT (OUT)

GO TO 14

15 PRINT('FAIL')

16 RETURN

END
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